历含氯有机化学品的生产是二噁英类的重要来源。通过对美国湖泊底泥和英国的土壤、植被的研究发现,二噁英的含量在2世纪3-4年代才开始快速上升,而这段时间正对应于氯化工业迅猛发展的时期。同时,废弃物焚烧、钢铁生产以及有色金属冶炼等也被发现是二噁英的重要排放源。据了解,1977年Olive等人在荷兰阿姆斯特丹市废弃物焚烧炉排放的飞灰和烟道气中检出了二噁英类物质,此后的研究表明废弃物焚烧是许多国家环境中二噁英的主要排放源。在污水厂的管理人员中,都了解SV的在一定程度上是可以反应出系统的污泥量多少的,但是在污泥膨胀期间,SV的和污泥浓度的多少是没有什么线性联系的,而SVI的引入,就很好的避免了这种因为膨胀导致的污泥量增加的误判。污泥量增加导致SV上升,SVI会保持一个低值,大约在8~15之间,但是由于污泥膨胀导致的SV上升,SVI会很高,一般在2以上,严重的到达4左右。所以SVI是判断活性污泥膨胀的指标。该站还开发了玻壳厂铅尘综合利用生产三盐基硫酸铅等技术,这些技术的应用为危险废物处理企业取得了良好的经济效益和良好的环境效益。目前,工业危险废物中的含铜废物(HW22)、含铅废物(HW31)、废酸(HW34)和含镍废物(HW46)等均可实现综合利用。人多数有色冶炼厂的生产工艺,除了提取主要目的金属外,还对矿石中伴生的多种金属组分进行回收,大部分废渣也设法在厂内转移到后续工艺中利用,或者生产副产品。最后,只剩下少量的最终废渣被堆放或者填埋处理。凡区间有条件,线路纵断面应设计成节能坡,应介绍节能坡坡度要求、实际坡度、使用比例等。评估方案的合理性,分析它和先进方案在节能方面存在的差异,提出优化措施。如所示,案例中对两种轨道选线方案进行对比,其中东侧引入方案线路与城市道路红线及主要建筑物平行,减少了车站用地和附近地块切割,避免了搬迁改造,利于换乘站实施和用能设备共享;平均站间距为139m(市区内平均站间距为1km左右较经济),对节电有利;线路平面平面曲线半径为35m,优于规范中一般地段取3m、困难地段取25m的标准,充分利用了大曲线半径,减少列车经过曲线段时的运行阻力;轨道采用无缝线路结构,可降低行车阻力和牵引电损。