等离子体分解有机废物可得到及一氧化碳,并可通过一个附属设备提取。它们可以用作化学原料去生产其它产品,如聚合物或其他化学产品。是十分有价值的商业气体,可应用在多种制造日用品的工艺中,:氨及塑料、、维生素、食油等。它亦可为燃料电池提供能量。燃料电池被广泛认为是未来解决污染问题的洁净能源。从无机废物中得到的可再用的产品包括可用于冶金工业的合成金属,可用于建筑及研磨材料的玻璃状的硅石。几乎所有废料均可被等离子体处理并转换成有用的产品。虽然清洁生产强调的是污染物预防,但并不排除末端治理。对于生产过程中不可避免排放的VOCs,可通过对VOCs进行收集处理的方式来减少排放到大气中的有机物,对此已有比较成熟的技术。目前针对VOCs的处理技术主要有催化燃烧法、吸附法、吸收法和生物膜法等,净化效率高,处理,可根据企业的实际情况来进行选择。本文以某印刷企业为例来具体说明清洁生产在印刷业VOCs治理中的应用。印刷企业VOCs治理实例3.1企业概况某企业主要从事软性包装材料的生产及相关服务,主要产品包括方便面外包膜、内包膜、碗盖、瓶标等,生产规模约5万R/S(千米),从业人数635人。滤床内种植植物为大叶特白空心菜,种植密度株行距1cm左右;潜流湿地内种植水稻苏香梗2号,种植密度株距8~1cm。考虑到组合生态系统整个床体的长度,沿程设置7个取样点,组合生态系统进水即为滤床进水,取样口4为滤床出水(即潜流湿地进水),取样口7为组合生态系统出水,取样口2~4为滤床沿程取样点,取样口5~7为潜流湿地沿程取样点。滤床内取样点均为距池底5cm处,潜流湿地内取样点均为距池底35cm处。滤床和潜流湿地内所种植物移植后,先进行半个月左右的缓苗,待移植后的植物成活且长出新叶后开展水质净化效果及植物生理学指标的实验研究。2进水水质实验进水为生活污水经厌氧池-缺氧池-曝气池等生物处理后的尾水,其COD为42.4~65.6mg/L,NH4+-N、NO3--N、TN、TP的质量浓度分别为7.8~12.11.~2.19.3~3.1.~2.5mg/L,测定时间为215年7月上旬-215年1月下旬。系统采用连续进水的方式,布水水力负荷为.24m/(md),每5d取样测定1次。析方法实验中,水中COD测定采用重铬酸钾法,NH4+-N含量测定采用水杨酸盐分光光度法,NO3--N含量测定采用磺酸紫外分光光度法,TN含量测定采用碱性过硫酸钾氧化-紫外分光光度法,TP含量采用测定过硫酸钾消解-钼锑抗分光光度法;植物中全N含量测定采用H2SO4-H2O2-蒸馏法,全P含量采用测定H2SO4-H2O2-钼锑抗比色法。外壳散热虽然白炽灯和萤光灯的能量损失大,但是大部分能量都是通过红外线直接放射出去,光源的发热少;而LED,除了作为可视光消耗的能量,其他能量都转换成了热。另外,由于LED封装面积小,通过对流和辐射的散热少,从而积累了大量的热。而分析其产热原因以及主要影响,主要有以下三个方面:一是热膨胀导致弯曲和龟裂;二是电子电路的运行障碍;三是材料品质恶化。因此要有效利用LED安装材质和散热器来解决散热,就必须把握产生热的传热路径。